Fakulta matematiky, fyziky
a informatiky
Univerzita Komenského v Bratislave

Seminár z kvalitatívnej teórie diferenciálnych rovníc - Pavol Quittner (11.4.2019)

vo štvrtok 11.4.2019 o 14:00 hod. v miestnosti M/223

04. 04. 2019 17.43 hod.
Od: Pavol Quittner

Prednášajúci: Pavol Quittner

Názov prednášky: Entire solutions of a semilinear heat equation

Termín: 11.4.2019, 14:00 hod., M/223

We characterize some classes of positive entire solutions of the nonlinear heat equation $u_t=\Delta u+u^p$, where $p$ is supercritical in the Sobolev sense. In particular, if $p>p_L$ where $p_L$ denotes the Lepin exponent, then any positive entire radial solution has to be a steady state (the condition $p\geq p_L$ is known to be necessary for such statement). As an application, we show the convergence of rescaled profiles of solutions with type II blow-up and of global solutions with slow time decay.

This is a joint work with Peter Poláčik (University of Minnesota).

Stránka seminára