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1 Introduction

Superlinear parabolic problems represent important mathematical models for various
phenomena occurring in physics, chemistry or biology. Therefore such problems have
been intensively studied by many authors. Beside solving the question of existence,
uniqueness, regularity etc. signi�cant e�ort has been made to obtain a priori estimates of
solutions. A priori estimates are important in the study of global solutions (i.e. solutions
which exist for all positive times) or blow-up solutions (i.e. solutions whose L∞-norm
becomes unbounded in �nite time); superlinear parabolic problems may possess both of
these types of solutions. Uniform a priori estimates also play a crucial role in the study
of so-called threshold solutions, i.e. solutions lying on the borderline between global
existence and blow-up.

Stationary solutions of parabolic problems are particular global solutions and their a
priori estimates are of independent interest since they can be used to prove the existence
and/or multiplicity of steady states, for example. The proofs of such estimates are usually
much easier than the proofs of estimates of time-dependent solutions. On the other
hand, the methods of the proofs of a priori estimates of stationary solutions can often be
modi�ed to yield a priori estimates of global time-dependent solutions.

In this thesis we will prove a priori estimates for positive solutions of two model
problems. In both cases we study a system of two equations in a smoothly bounded
domain Ω ⊂ RN complemented by the homogeneous Dirichlet boundary conditions on
the boundary ∂Ω. The problems involve power nonlinearities and have been intensively
studied in the past (see Section 2 for known results and precise formulation of our main
results). Our approach is based on bootstrap in suitable weighted Lebesgue spaces.

In Section 4 we prove a priori estimates and existence of positive stationary solutions:
We consider the elliptic problem

−∆u = a(x)|x|−κvq, x ∈ Ω,
−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

 (1)

where a, b ∈ L∞(Ω) are nonnegative, κ, λ ∈ (0, 2), p, q > 0, pq > 1, and 0 ∈ ∂Ω. We
deal with so-called very weak solutions and we �nd optimal conditions on the exponents
κ, λ, p, q guaranteeing a priori estimates and existence of such solutions. These results
have been published in [25].

In Section 5 we study global classical positive solutions of the problem

ut −∆u = urvp, (x, t) ∈ Ω× (0,∞),
vt −∆v = uqvs, (x, t) ∈ Ω× (0,∞),
u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω,
v(x, 0) = v0(x), x ∈ Ω

 (2)

where p, q, r, s ≥ 0. In this case, optimal conditions on the exponents p, q, r, s guarantee-
ing a priori estimates and existence of positive stationary very weak solutions have been
obtained in [30], and we �nd su�cient conditions on the exponents guaranteeing uniform
a priori estimates of global classical solutions. Our method is in some sense similar to
that used in [30] (both methods are based on bootstrap in weighted Lebesgue spaces
and estimates of auxiliary functions of the form uav1−a) but our proofs are much more
involved. In particular, we have to use precise estimates of the Dirichlet heat semigroup
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and several additional ad-hoc arguments. These di�culties cause that our su�cient con-
ditions are quite technical and probably not optimal. On the other hand, our results are
new and our approach is also new in the parabolic setting: Although the bootstrap in
weighted Lebesgue spaces has been used many times in the case of superlinear elliptic
problems (see the references in [30], for example), it has not yet been used to prove a
priori estimates of global solutions of superlinear parabolic problems. In fact, the known
methods for obtaining such estimates always require some special structure of the prob-
lem (see a more detailed discussion in Section 2) and cannot be used for system (2) in
general. In addition, our method is quite robust: It can also be used if the problem is
perturbed or if we replace the Dirichlet boundary conditions by the Neumann ones, for
example.

This thesis is organized as follows. In Section 2 we discuss known results and methods
of proofs of a priori estimates of stationary and time-dependent solutions of superlinear
parabolic problems and we also formulate our main results. Section 3 contains preliminary
lemmas and inequalities that we need in subsequent sections. In Section 4 we prove a
priori estimates and existence of positive solutions of system (1). In Section 5 we prove
a priori estimates of positive global solutions of problem (2).

2 Known and main results

Unless stated otherwise, in the whole section we assume that Ω ⊂ RN is a smooth bounded
domain and by a solution we mean a nonnegative classical solution.

2.1 Elliptic scalar case

One of the simplest examples of superlinear elliptic problems is the Dirichlet problem for
the Lane-Emden (or Lane-Emden-Fowler) equation (see [21, 13, 17]):

−∆u = up, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(3)

where p > 1. The motivation for the study of this problem originates in astrophysics (see
[21, 13]) but this problem and its modi�cations also play a crucial role in the study of
the standing wave solutions of the nonlinear Schrödinger equation or in the di�erential
geometry (the Yamabe problem). Of course, solutions of (3) are also steady states of the
corresponding nonlinear heat (or wave) equation. Finally, problem (3) and its parabolic
counterpart are very useful model problems: On one hand, they look very simple so that
it is de�nitely easier to study their solutions than those of more complicated systems, and
the methods of the proofs developed for these model problems can often be used for more
complicated ones. On the other hand, the structure of these model problems is extremely
rich and their study represents a great mathematical challenge: In spite of their intensive
study (see [34] and the references therein), they still o�er many open questions.

Let us mention some results about the existence and a priori estimates of solutions of
problem (3). If Ω is starshaped then a positive solution of (3) exists if and only if p < pS
where

pS =
N + 2

(N − 2)+

is the so-called Sobolev exponent, see [1, 27]. The history of a priori estimates of positive
solutions of (3) is quite long. They have been proved �rst in [37] if N = 2 and p < 3,
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and then in [24] if p < N/(N − 1), in [6] if p < (N + 1)/(N − 1) and, �nally, in [18, 10]
if p < pS. More precisely, the following theorem was proved in [18, 10]:

Theorem 2.1. Let Ω be a smooth bounded domain and p ∈ (1, pS). Then there exists a
constant C such that for all positive solutions u of (3) satisfy the estimate ||u||∞ ≤ C.

The methods of the proof Theorem 2.1 in [18, 10] were quite di�erent: The method in
[18] was based on scaling arguments and the corresponding Liouville theorem from [19]
(guaranteeing the nonexistence of positive solutions of (3) for Ω = RN and 1 < p < pS);
the method in [10] was based on the method of moving planes and the Pohozaev identity
(which requires a special structure of the problem).

Interestingly, the exponent p = (N + 1)/(N − 1) is also critical for problem (3) in
some sense. More precisely, so-called very weak solutions of problem (3) are known to be
bounded (and, consequently, satisfy the a priori estimate in Theorem 2.1) if and only if
p < (N + 1)/(N − 1), see [36, 12]. In addition, the proof of the boundedness and a priori
estimates of very weak solutions is quite easy (it is su�cient to use a relatively simple
bootstrap argument in weighted Lebesgue spaces, see [33]), and can be used in a much
more general situation, where both methods from [18, 10] fail (see [30] and the references
therein).

2.2 Elliptic vector case

The method based on bootstrap in weighted Lebesgue spaces mentioned at the end of
Subsection 2.1 has been successfully used for many elliptic systems, see [33, 30] and the
references therein. Of course, each particular use of this method usually requires some
extra ad-hoc arguments. In particular, in the case of stationary solutions of problem (2),
one of such ad-hoc arguments was a universal bound of the auxiliary function uav1−a for
suitable a ∈ (0, 1). Using this argument and the notation

α := 2
p+ 1− s

pq − (1− r)(1− s)
, β := 2

q + 1− r
pq − (1− r)(1− s)

,

the following theorem was proved in [30]:

Theorem 2.2. Let Ω be a smooth bounded domain, p, q, r, s ≥ 0 satisfy

pq 6= (1− r)(1− s) (4)

and

min{p+ r, q + s}, r, s < N+1
N−1

,

if pq > (1− r)(1− s) then max{α, β} > N − 1.

}
(5)

Then there exists a positive stationary solution of (2). In addition, there exists a positive
constant C depending on Ω, N, p, q, r, s such that ||u||∞ + ||v||∞ < C for any positive very
weak stationary solution of (2).

The nondegeneracy condition (4) in Theorem 2.2 is also necessary for the existence and
a priori estimates of (classical) positive stationary solutions of (2), and the subcriticality
condition (5) is also optimal for the boundedness of very weak positive stationary solutions
of (2) (it corresponds to the condition p < (N + 1)/(N − 1) for the scalar problem (3)).
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On the other hand, it is known that condition (5) is not necessary for the existence and
a priori estimates of classical positive stationary solutions of (2): An optimal condition
for general p, q, r, s does not seem to be known, see the discussion in [30]. We will use
similar approach as in [30] in order to �nd su�cient conditions on p, q, r, s guaranteeing
uniform a priori estimates of global (time-dependent) classical positive solutions of (2).

In this thesis we also use bootstrap in weighted Lebesgue spaces in order to prove a
priori estimates and existence of positive very weak solutions of the non-homogeneous
elliptic system (1), where

p, q > 0, pq > 1, a, b ∈ L∞(Ω), a, b ≥ 0, a, b 6≡ 0 (6)

and some additional assumptions are satis�ed. We say that (u, v) is a very weak solution
of (1) if u, v ∈ L1(Ω), the right-hand sides in (1) belong to the weighted Lebesgue space
L1(Ω; dist(x, ∂Ω) dx) and

−
∫

Ω

u∆ϕ dx =

∫
Ω

a(x)|x|−κvqϕ dx, −
∫

Ω

v∆ϕ dx =

∫
Ω

b(x)|x|−λupϕ dx (7)

for every ϕ ∈ C2(Ω), ϕ = 0 on ∂Ω.
Problem (1) with κ = λ = 0 has been widely studied. Concerning very weak solutions,

necessary and su�cient conditions for their boundedness were found in [5], [33] and [36].
In those papers the existence of very weak solution was studied, as well.

Problem (1) with a = b ≡ 1, 0 ∈ Ω and general κ, λ ∈ R has been studied by
several authors, who were mainly interested in the existence of classical solutions (if
max{κ, λ} ≤ 0) or solutions of the class C2(Ω\{0}) ∩ C(Ω) (if max{κ, λ} > 0). If
max{κ, λ} ≥ 2, then (1) has no positive solution in this class for any domain Ω containing
the origin; see [3]. If max{κ, λ} < 2, Ω is a bounded starshaped domain and some
additional assumptions are satis�ed, then (1) has a positive solution if and only if the
following condition is satis�ed

N − κ
1 + q

+
N − λ
1 + p

> N − 2; (8)

see e.g. [7], [11], [15], [22] for details. If max{κ, λ} < 2 and Ω = RN , N ≥ 3 , then (1)
has no positive radial solution if and only if (8) is true. The conjecture is, that if (8)
holds, (1) has no positive nonradial solution for Ω = RN ; see [4]. This conjecture has
been partially proved in e.g. [26].

We consider the case 0 ∈ ∂Ω and κ, λ ∈ (0, 2). Our main result guarantees a
priori estimates of positive very weak solutions of (1) and its modi�cations whenever
max{α, β} > N − 1, where

α :=
(2− λ)q + 2− κ

pq − 1
, β :=

(2− κ)p+ 2− λ
pq − 1

. (9)

These estimates enable us also to prove the following existence result.

Theorem 2.3. Let Ω be a smooth bounded domain, 0 ∈ ∂Ω, κ, λ ∈ (0, 2) and assume
also (6). Let α, β be de�ned by (9).

(i) Assume max{α, β} > N − 1. Then there exists a positive bounded very weak
solution of problem (1) and each positive very weak solution (u, v) of (1) is bounded and
satis�es the estimate

||u||∞ + ||v||∞ ≤ C(Ω, a, b, p, q, κ, λ).

(ii) Assume max{α, β} < N − 1. Then there exist functions a, b satisfying (6) and a
positive very weak solution (u, v) of problem (1) such that u, v /∈ L∞(Ω).
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2.3 Parabolic scalar case

Consider the model parabolic problem

ut −∆u = up, (x, t) ∈ Ω× (0,∞),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω

 (10)

where Ω is a bounded domain with smooth boundary, p > 1, and u0 ∈ L∞(Ω), u0 ≥ 0.
It is known that under some restrictions on the exponent p, global positive solutions of
(10) satisfy various uniform a priori estimates. Let us mention some of them:

i) a priori estimate depending on the initial data

sup
Ω
u(., t) ≤ C(Ω, p, u0) for t ≥ 0,

ii) uniform a priori estimate

sup
Ω
u(., t) ≤ C(Ω, p, ||u0||∞) for t ≥ 0,

iii) universal a priori estimate

sup
Ω
u(., t) ≤ C(Ω, p, τ) for t ≥ τ > 0,

where the constant C may explode as τ → 0+,

iv) asymptotic a priori bound of the form

lim sup
t→∞

||u(., t)||∞ ≤ C(Ω, p).

Estimate of type i) says that each global positive solution of (10) is bounded, uniformly
with respect to t ∈ (0,∞). Such estimates have been �rst obtained in [23] for convex
domains Ω under the assumption p < N+2

N
and then in [8] for general bounded domains

and p < pS. The proof in [8] heavily used the variational structure of problem (10). In
[23] it was also proved that for p ≥ pS, there exist global unbounded weak (so-called L1)
solutions. In fact, it was proved much later that these unbounded weak solutions are
classical if p = pS but they may blow up in �nite time if p > pS, see the references in [34].

The stronger estimate of type ii) was derived in [8] for global (not necessarily positive)
solutions of problem (10) under the assumption p < 3N+8

(3N−4)+
and in [20] for global positive

solutions under the optimal assumption p < pS. The positivity assumption in [20] was
removed in [29] (the nonlinearity up is unterstood as |u|p−1u in the case of sign-changing
solutions). All proofs in [8, 20, 29] heavily used the variational structure of problem (10).
Estimates of type ii) have several important applications, see [34]. In particular, they
guarantee that all threshold solutions lying on the borderline between global existence
and blow-up are global, bounded and their ω-limit sets consist of nontrivial steady states
(such results cannot be proved by using the weaker estimate of type i)).

Universal estimate of type iii) for global positive solutions of (10) has �rstly been
obtained in [16] under the assumption p < N+1

N−1
. The same estimate has then been proved

in [31] for p < pS and N ≤ 3 and in [35] for p < pS if N ≤ 4 and p < (N − 1)/(N − 3)+

if N > 4. Finally, the following quantitative version of estimate of type iii) was proved
in [28] and [32].
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Theorem 2.4. Assume that p < N(N+2)
(N−1)2

or N = 2 (or p < pS, Ω is a ball and u0

is radially symmetric). Then there exists a constant C(Ω, p) > 0 such that all global
positive classical solutions of (10) satisfy the estimate

sup
Ω
u(·, t) ≤ C(1 + t−1/(p−1)), t > 0. (11)

Estimate (11) is based on scaling, doubling arguments, and parabolic Liouville theo-
rems for entire solutions of problem (10) in RN × (−∞,∞) and RN

+ × (−∞,∞) (where
RN

+ is a halfspace). Similarly as in the case of estimates of type ii) and i), all proofs
of estimate iii) used the special structure of problem (10). Notice also that estimate
iii) implies estimate iv) and estimate iv) implies uniform estimate for stationary positive
solutions of (10).

2.4 Parabolic vector case

As mentioned in Subsection 2.3, all proofs of (optimal) a priori estimates of global positive
solutions of the scalar problem (10) heavily used the special structure of the problem.
In fact, all of them either used directly the variational structure of (10) or the scaling
invariance and the validity of suitable parabolic Liouville theorems (which are known due
to the special structure of (10)).

Recall that we are interested in problem (2) which, in general, does not have varia-
tional structure. In addition, the known parabolic Liouville theorems for (2) in [14] are
just of Fujita-type (hence require severe restrictions on the exponents) and the nonex-
istence of entire solutions is only guaranteed for solutions (u, v) with both components
being positive. In fact, if p, s > 0, for example, then problem (2) in RN × (−∞,∞)
always possesses semi-trivial solutions of the form (u, v) = (C, 0), where C is a positive
constant, so that standard scaling arguments yielding a priori estimates cannot be used.
Due to these facts, there are no results on a priori estimates of global positive solutions
of (2) in the general (superlinear) case, even if the global existence and blow-up for (2)
have been intensively studied in such general situation. Of course, for some very special
choices of exponents p, q, r, s problem (2) does have variational structure and then some
of the methods mentioned in Subsection 2.3 can be used. Similarly, if r = s = 0, for
example, then the semi-trivial solutions mentioned above do not exist, so that one can
use the corresponding parabolic Liouville theorems.

Since we wish to prove uniform a priori estimates of global positive solutions of (2)
and one of the main applications of such estimates is the proof of global existence and
boundedness of threshold solutions lying on the borderline between global existence and
blow-up, let us �rst mention conditions on p, q, r, s guaranteeing that both global and
blow-up solutions (hence also threshold solutions) of (2) exist. The following theorem
was proved in [2, 38] (see also [9, 39, 40] for other results on blow-up of positive solutions
of (2)).

Theorem 2.5. Let Ω be smooth and bounded, p, q, r, s ≥ 0, p+ r > 0, q + s > 0 and let
the initial data u0, v0 ∈ C(Ω̄) be nonnegative and satisfy the compatibility conditions.

(i) Assume that
r ≤ 1, s ≤ 1 and pq < (1− r)(1− s). (12)

Then all solutions of (2) exist globally.
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(ii) Assume that

r > 1, p > 0, q = 0, s = 1, λ1 < 1, r ≤ 1 + p
1− λ1

λ1

(13)

or

s > 1, q > 0, p = 0, r = 1, λ1 < 1, s ≤ 1 + q
1− λ1

λ1

, (14)

where λ1 is the least eigenvalue of the negative Dirichlet Laplacian in Ω. Then, for any
initial data u0, v0 ≥ 0, u0, v0 6≡ 0, the solution of (2) blows up in �nite time.

(iii) If (12), (13) and (14) do not hold then the solution of (2) exists globally for
small initial data, and blows up in �nite time for large initial data.

Next we present our main results concerning problem (2). We will assume that

Ω is smooth and bounded, u0, v0 ∈ L∞(Ω) are nonnegative, (15)

and
p, q, r, s ≥ 0; if q = 0 then either r > 1 or s ≤ 1. (16)

Theorem 2.6. Assume (15), (16) and pq > (r − 1)(s − 1). Assume also that either
r > 1, p > 0, p + r < N+3

N+1
, s + 2

N+1
r−1
p+r−1

< N+3
N+1

or r ≤ 1, 0 < p < 2
N+1

, s <
N+3
N+1

. Let (u, v) be a global nonegative solution of problem (2). Then there exists C =
C(p, q, r, s,Ω, ||u(τ)||∞, ||v(τ)||∞) such that

sup
s′∈[τ,τ+T ]

||u(s′)||∞ + sup
s′∈[τ,τ+T ]

||v(s′)||∞ ≤ C (17)

for every T, τ ≥ 0.

Theorem 2.7. Assume (15), (16) and either max{r, s} > 1 or pq > (r − 1)(s − 1).
Assume also p ≥ 1, p+ r < N+3

N+1
, s ≤ 1,

(p+ r)

(
p− 2

N + 1

)
+ r < 1

and

0 < q <
1− r
p− 2

N+1

(
1− N − 1

N + 1
s

)
.

Let (u, v) be a global nonnegative solution of problem (2). Then, given τ > 0, there exists
C = C(p, q, r, s,Ω, τ, ||u(τ)||1,δ, ||v(τ)||1,δ) such that

||u(t)||∞ + ||v(t)||∞ ≤ C, t ≥ τ.

Remark. The constant C in Theorem 2.7 may explode if τ → 0+, and is bounded
for ||u(τ)||1,δ, ||v(τ)||1,δ bounded. By || · ||1,δ we denote the norm in the weighted Lebesgue
space L1(Ω; dist(x, ∂Ω) dx).

As already mentioned, the proofs of Theorems 2.6 and 2.7 are mainly based on boot-
strap in weighted Lebesgue spaces, universal estimates of auxiliary functions of the form
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uav1−a and precise estimates of the Dirichlet heat kernel. Our approach can also be used,
for example, for the following problem with Neumann boundary conditions

ut −∆u = urvp − λu, (x, t) ∈ Ω× (0,∞),
vt −∆v = uqvs − λv, (x, t) ∈ Ω× (0,∞),
uν(x, t) = vν(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω,
v(x, 0) = v0(x), x ∈ Ω

 (18)

where Ω, p, q, r, s and u0, v0 are as above, λ > 0 and ν is the outer unit normal on the
boundary ∂Ω. The terms −λu,−λv with λ > 0 are needed in (18), since otherwise (18)
cannot admit both global and blow-up positive solutions. Let us also note that in this case
one has to work in standard (and not weighted) Lebesgue spaces and that the restrictions
on the exponents p, q, r, s are less severe than in the case of Dirichlet boundary conditions:
Roughly speaking, one can replace N with N − 1 in those restrictions (in particular, the
condition p+ r < N+3

N+1
becomes p+ r < N+2

N
in this case).

If r = s = 0 and p, q > 1 then the following universal estimate of solutions of problem
(2) was proved in [16].

Theorem 2.8. Assume r = s = 0, 1 < p, q < N+3
N+1

and let τ > 0. There exists a constant
C(Ω, p, q, τ) > 0, such that all nonnegative global classical solutions of (2) satisfy the
estimate

sup
Ω
u(., t) + sup

Ω
v(., t) ≤ C(Ω, p, q, τ) for t ≥ τ. (19)

Let us also note that if r = s = 0 and p, q > 1 then a very easy argument in [16]
yields a universal estimate of ||u(τ)||1,δ, ||v(τ)||1,δ for all τ ≥ 0, hence Theorem 2.7 also
guarantees estimate (19) in this case and the assumptions on p, q are di�erent from those
in Theorem 2.8. In particular, q need not satisfy the condition q < N+3

N+1
. Of course, if

r = s = 0 then (as mentioned above) one could also use the parabolic Liouville theorems
in [14] together with scaling and doubling arguments to prove quantitative universal
estimates. The main advantage of our results and proofs is the fact that we do not need
the assumption r = s = 0.

Conclusion

The aim of this thesis is to obtain a priori estimates for positive global solutions of
problem

ut −∆u = urvp, (x, t) ∈ Ω× (0,∞),
vt −∆v = uqvs, (x, t) ∈ Ω× (0,∞),
u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω,
v(x, 0) = v0(x), x ∈ Ω,

 (20)

where Ω is a smooth bounded domain in RN , u0, v0 ∈ L∞(Ω) are nonnegative functions
and p, q, r, s ≥ 0. For general p, q, r, s, usual methods fail. It turns out that the method
from [30] used for an elliptic problem can be modi�ed to yield the desired results. The
modi�cation is nontrivial and requires several technical restrictions on the exponents
p, q, r, s. Despite these restrictions, our theorems still can be used for several interesting
problems studied by other authors.

8



Beside modi�cations of the ideas in [30], we also heavily used estimates of Dirichlet
heat semigroup in weighted Lebesgue spaces and the variation-of-constants formula. Our
method is suitable for many perturbations or modi�cations of problem (20) and also for
problem (18) with homogeneous Neumann boundary conditions.

In the thesis, we also present our results form [25] for the following elliptic problem

−∆u = a(x)|x|−κvq, x ∈ Ω,
−∆v = b(x)|x|−λup, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

 (21)

where Ω is a bounded domain with smooth boundary, p, q > 0, pq > 1, a, b ∈ L∞(Ω),
a, b ≥ 0, a, b 6≡ 0, κ, λ ∈ R. Using bootstrap in weighted Lebesgue spaces, we proved
a priori estimate of nonnegative very weak solutions, and using these estimates and
topological degree arguments we also proved the existence of positive very weak solution
of (21).
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