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1 Motivation and goals of the thesis

Problem solving is probably the most common activity of all organisms, especially of humans.

We deal with various problems throughout our lives, from infancy to adulthood. Therefore, it

is not surprising that an extensive e�ort has been made to understand the cognitive processes

responsible for this ability.

One possible research approach is to look at why some people are able to solve particular

classes of problems while others are not, how they go about it, what makes some problems

insolvable, and how is it possible that a small super�cial change can make a very di�cult problem

into a trivial one (and vice versa). Through this approach psychologists and other scientists were

able to shed a lot of light on many cognitive mechanisms of human problem solving.

However, there is di�erence between solving a problem by discovering a crucial relation that

allows a quick solution and an extensive and long search through many possibilities. Undoubtedly,

human beings have immense capacity for solving vast number of diverse and complex problems,

but the pinnacle of our mental potential is not the capacity itself but rather the e�ectivity of

this capacity. In this sense, we believe that there is still little research done on the e�ectivity of

human problems solving, that is, we need to have a closer look at why some people are able to

solve problems (much) faster than others, how and why are they able to discern and focus on

the information crucial to the solution, and generally what this e�ectivity depends on and how

good it really is when compared with some provable e�ective method.

In this thesis we attempt to give answers to the last two questions. And while these answers,

if proved correct, provide new and important insights into human problem solving, they are

of high value to AI research as well. Human brain is so far our only example of an e�ective

general problem solving system (Langley, 2006), and by understanding the principles behind its

e�ectivity, the development in AI (like cognitive architectures) can advance along more speci�c

paths towards attaining human level abilities.

Here we formulate more particularly two our goals (mentioned above), and add some related

ones:

1. Identify the cognitive processes (mechanisms, abilities) su�cient for successful human

problem solving, and extract those of them that are the sources/roots of the e�ectivity of

human problem solving

2. Compare the e�ectivity of human problem solving with an optimal strategy for problem

solving (Solomono�, 1986)

3. Using the previous results, propose an algorithm for problem solving

4. Analyse the optimal Solomono� strategy when it is used mistakenly by imprecise informa-

tion (note that it is used mistakenly quite often, since to gain enough precise information

may be a hard problem)

The goals 1, 2, 3, and 4 have been achieved by the results from Sections 3 & 4, from Section

5, from Section 6, and from Section 7, respectively).
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2 Introduction

Generally, the process of problem solving can be simpli�ed to �nding, testing, and applying

the ideas (solution candidates). The e�ective problem solving can be then viewed as applying

the right ideas at the right time. Such ideas can be consciously sought for, or they can come

unconsciously like an automated procedure (tying shoelaces, for example). One way to �nd these

ideas, albeit usually very ine�ective one, is the aforementioned Blind search. On one hand, this

exhaustive search is sometimes inevitable. For example, any problem with encrypted assignment

is for a solver without the decryption key (or extensive cryptanalytic skills) practically insolvable

without the exhaustive search (in fact, its insolvable either way as the space of decryption keys

is usually huge, but that's not the point). Similarly, solving Rubik cube by trying all possible

move sequences is highly ine�cient as 20 moves are su�cient to solve any instance.

Therefore, Blind search is a universal but not an e�ective method, if there are too many

solution candidates to check them one by one (which is usually the case). The other source of

its ine�ectivity is that the candidates are not tested in any problem related way (hence the

name Blind search). Solomono� (1986) in his problem solving system exploited a theorem in

probability stating that if an appropriate order could be imposed on the solution candidates,

then checking them in this order would yield probabilistically optimal solution strategy.

Theorem 2.1 (Solomono�, 1986). Let m1,m2,m3, ... be candidates/ideas (or, in mechanical

problem solving, strings) that can be used to solve a problem. Let pk be probability that the

candidate mk will solve the problem, and tk the time required to generate and test this candidate.

Then, testing the candidates in the decreasing order pk
tk

gives the minimal expected time before a

solution is found.

Corollary 2.2. The e�ectivity of problem solving depends on

1. Knowledge and experience,

2. Ability to generate − in the e�ective order (Theorem 2.1) and in a short time − the

appropriate candidate ideas for solving the (sub)problems.

3 Cognitive mechanisms related to the e�ective human problem

solving

We propose a list of six cognitive abilities or mechanisms that, we argue, signi�cantly help

humans to generate in the e�ective order and in short time the appropriate candidate ideas

for solving the (sub)problems. Thus, in our opinion these are the mechanisms that give rise

to the e�ectivity of human problem solving, and as such should be implemented in cognitive

architectures for this reason.

Proposition 3.1. The following processes (mechanisms, abilities) are related to the e�ectivity of

human problem solving (with respect to Theorem 2.1, especially to the second point of Corollary

2.2):
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1. Discovering similarities

2. Discovering relations, connections and associations

3. Generalization, speci�cation

4. Abstraction

5. Intuition

6. Context sensitivity and the ability to focus and forget

4 General human problem solving mechanisms

In this section we analysed general human problem solving process and identi�ed necessary and

probably su�cient mechanisms for successful human problem solving.

Proposition 4.1. The following processes (mechanisms, abilities) are necessary for successful

human problem solving

1. Discovering similar concepts (representing information, experience, properties, prob-

lems, situations, models, ...)

2. Discovering related, connected, and associated concepts (representing information,

experience, properties, problems, situations, models, ...)

3. Manipulation1 with the information, problem, or situation or its representation

(e.g., transform, split, add or remove concepts, features, attributes, imagine, experiment,

...)

4. Assessing1 the situation/progress and deciding what to do next

5. Incubation (stop solving the problem)

Furthermore, other cognitive processes not directly linked with problem solving, including

(a) language processing,

(b) working memory processes (coordinating, monitoring, and executing the intended activi-

ties),

(c) ability to interpret/understand memories and experience,

are (most likely) used as well.

Hypothesis 4.2. The processes (mechanisms, abilities) from the Proposition 4.1 are su�cient

for successful human problem solving.

1 By this we mean application of some method, procedure, heuristic, experience, common sense, logic, ... that

performs manipulation/assessment action on something.
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Additionally, we linked the e�ective cognitive mechanisms from Proposition 3.1 with general

problem solving mechanisms from Proposition 4.1, thus establishing �rst arguments about the

e�ectivity of human problem solving.

Proposition 4.3. In terms of human problem solving capabilities, the processes (mechanisms,

abilities) from Proposition 3.1 together with (a)�(c) from Proposition 4.1 su�ce to replace the

processes (mechanisms, abilities) from Proposition 4.1.

Hypothesis 4.4. Tthe processes (mechanisms, abilities) from Proposition 3.1 together with the

cognitive processes for

(a) language processing,

(b) working memory process (coordinating, monitoring, and executing the intended activities),

(c) ability to interpret/understand memories and experience,

are su�cient for successful human problem solving. Together, they are the mechanisms for general

human problem solving.

5 The e�ectivity of human problem solving

In this section we put together our results from the Sections 3 and 4 to analyse the scope and

the roots of the e�ectivity of human problem solving.

Hypothesis 5.1. In the probabilistic sense of Theorem 2.1, human problem solving is e�ective

with respect to

1. solver's knowledge and experience,

2. quality of his processes, mechanisms, or abilities from Proposition 3.1.

Given what we observe in the world, the human problem solving process is indeed fast (i.e.,

e�ective). Whence this e�ectivity comes from is still uncertain, but the results of our work

summarized in Hypothesis 5.1 suggests that the roots of the e�ectivity of human problem

solving lie in

1. optimal problem solving strategy from Solomono� (1986),

2. solver's knowledge and experience,

3. quality of the solver's mechanisms from Proposition 3.1,

4. language processing (in the sense of Baldo et al., 2005).

6 Human problem solving model

In this section we describe the e�ective general human problem solving process as an algorithm

based on the general problem solving mechanisms from the Section 4 and e�ective cognitive

mechanisms from Section 3.
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Proposition 6.1. The human problem solving can be formulated as a process of the following

steps.

1. Represent the problem and identify the di�culty

2. Asses the problem model for appropriateness and e�ectivity through macro process 4

from Proposition 4.1, or, if formulated as a separate problem (e.g., "How do I assess my

problem model?"), through all mechanisms from Proposition 4.12.

(a) If a su�cient model is available, go to step 3.

(b) If there are more available su�cient models, select a subset and go to step 3.

(c) Otherwise, formulate a new problem of �nding better model (or of transforming the

problem to a more promising problem3) , and go to step 1 (new problem to be solved).

3. Find and asses idea(s) to continue solving the problem (within the current model 4)

(a) If an applicable idea is available through the mechanisms from Proposition 4.1, go to

step 4.

(b) If more applicable ideas are available, select a subset and go to step 4.

(c) Otherwise, formulate a new problem (of �nding better idea, model, or of transforming

the problem to a more promising problem), and go to step 1 (new problem to be solved).

4. Parallely apply the (selected) idea5, if necessary interact with the world, and update

the problem model accordingly.

5. If the problem is not solved, return to step 2 or 3, or (temporarily) give up.

7 Mathematical aspects of the e�ective problem solving

In this section we consider the e�ect of interchanging two candidates with respect to the optimal

Solomono� strategy (Theorem 2.1) on the problem solving time and the number of candidates

examined. We give several bounds on the error resulting from the mentioned interchange. Ho-

wever, since the values pi and ti from Theorem 2.1 can be arbitrary, we examine three special

restrictions (called expert, novice, and indi�erent system, respectively) under which reasonable

bounds can be achieved. Finally, we consider a modi�cation of the Solomono� strategy when

the value of ti for each i is not �xed. This modi�cation models the case when we applied the

same solution candidate (e.g., a method) to two or more similar problems each time solving the

problem in di�erent times.
2If new problem is formulated, the algorithm recursively iterates.
3That is, an easier, more known, simpli�ed version of the problem, or its decomposition into sub-problems

(e.g., independent � divide & conquer, dependent � dynamic programming)
4If there are more models selected, follow them by rotation.
5If there are more problem solving ideas selected, follow them by rotation.

7



Theorem 7.1 (Solomono�, 1986). If each bet costs 1 dollar, then betting in the order of decre-

asing value pk (i.e., always taking the bet with highest win probability available) would give the

greatest win probability per dollar.

Remark 7.2. Note that the expected number of solution candidates examined is not given by

ES because we did not include the possibility that all of our solution candidates failed to solve

the problem. The corrected value ES is given by

ES =

N∑
i=1

i ·
i−1∏
j=1

(1− pj) · pi +N

N∏
j=1

(1− pj).

This is because the probability of each candidate failing to solve the problem is
∏N

j=1 (1− pj),
while it takes us N trials to discover this.

Theorem 7.3 (Solomono�, 1986). In the general scenario, if one continues to select subsequent

bets on the basis of maximum pk/dk, the expected money spent before winning will be minimal.

Suppose we change dollars to some measure of time (tk). Then, betting according to this strategy

yields the minimum expected time to win.

Remark 7.4. Note that the expected problem solving time is not given by ET because, again,

we did not include the possibility that all of our solution candidates failed to solve the problem.

The corrected value ET is given by

ET =
N∑
i=1

i∑
l=1

tl ·
i−1∏
j=1

(1− pj) · pi +
N∑
l=1

tl ·
N∏
j=1

(1− pj)

for the same reasons as in Remark 7.2.

Theorem 7.5. Let pk − pk+1 = θ > 0 for some k ∈ {1, 2, ..., N − 1} (assuming {pi}Ni=1 to

be ordered as before in the proof of the Theorem 7.1). Then, following the optimal Solomono�

strategy from Theorem 7.1 with (k+1)th solution candidate tried just before kth (a solver's error)

yields a sub-optimal expected number of solution candidates tried before either �nding a solution

or discovering that none of our solution candidates works, and the expected excess EXC can be

quanti�ed as follows

EXC =

k−1∏
j=1

(1− pj) · θ.

Furthermore,

θ · e−Sk−1 ≥ EXC ≥ θ · (1− Sk−1 + (k − 2)P
k−1
2k−4

k−1 ).

Theorem 7.6. Exchanging the kth and (k+n)th solution candidates in the optimal Solomono�

strategy from Theorem 7.1 (a solver's error) increases the expected number of solution candidates

examined by at most the excess

EXC = v1 + v2 + v3
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where

v1 = k · (pk+n − pk) ·Qk−1,

v2 =
pk − pk+n

1− pk
·
k+n−1∑
l=k+1

l ·Ql−1 · pl,

v3 = (k + n) · pk − pk+n

1− pk
·Qk+n−1.

Corollary 7.7. Let pk − pk+n = θ > 0. Then, the term EXC from Theorem 7.6 can be upper

bounded as follows

EXC ≤ θ

1− pk
· (k + n) · (npk+1 + 1) e−Sk .

Theorem 7.8. Let
pk
tk
− pk+1

tk+1
= θ > 0

for some k ∈ {1, 2, ..., N − 1} (assuming {piti }
N
i=1 to be ordered as before in Theorem 7.3). Then

following the optimal Solomono� strategy from Theorem 7.3 with (k + 1)th solution candidate

tried just before kth (a solver's error) yields a sub-optimal expected amount of time spent before

either �nding a solution or discovering that none of our solution candidates works, and the

expected excess EXC can be quanti�ed as follows

EXC =
k−1∏
j=1

(1− pj) · tktk+1 · θ.

Furthermore,

θ · tktk+1 · e−Sk−1 ≥ EXC ≥ θ · tktk+1 ·
(
1− Sk−1 + (k − 2)P

k−1
2k−4

k−1

)
.

Theorem 7.9. Exchanging the kth and (k+n)th solution candidates in the optimal Solomono�

strategy from Theorem 7.3 (a solver's error) increases the expected amount of time by at most

the excess

EXC = q1 + q2 + q3

where

q1 = Tk−1 ·Qk−1 · (pk+n − pk) +Qk−1 · (tk+npk+n − tkpk),

q2 =

k+n−1∑
l=k+1

Ql−1 · pl
(
Tl ·

pk − pk+n

1− pk
+ (tk+n − tk)

1− pk+n

1− pk

)
,

q3 = Tk+n ·Qk+n−1 ·
pk − pk+n

1− pk
.
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The �rst special case we would like to examine are domain experts (being a domain expert

de�nitely helps problem solving). We can model the domain expert solver as a system of solution

candidates where each solution candidate has at least some chance of solving a problem. That

is,

∀k : pk ≥ c, for some c ∈ (0, 1).

We are interested in upper bounds on the excess term EXC from Theorems 7.6 and 7.9.

Theorem 7.10. The expected number of excessive solution candidates tried in the expert system

before either �nding a solution or discovering that none of our solution candidates works, which

is expressed by the term EXC in Theorem 7.6, can be upper bounded as follows

EXC ≤ θ pk+1

1− pk
(1− c)k

c2
(
A−B(1− c)n−1

)
where θ = pk − pk+n, and

A = 1 + kc

[
1− 1− pk

1− c
c

pk+1

(
1− p1
1− c

)k−1
]
,

B = (1− c) + c(n+ k)

(
1− c

pk+1

)
.

Theorem 7.11. Let T be the constant speci�ed above. Then, expected increase of time in the

expert system before either �nding a solution or discovering that none of our solution candidates

works, which is expressed by the term EXC in Theorem 7.9, can be upper bounded as follows.

If pk+n − pk ≤ 0, then

EXC ≤ T · pmax2 ·
pk − pk+n

1− pk
(1− c)k

c2
(
A−B(1− c)n−1

)
where

A = 1 + kc

[
1− 1− pk

1− c
c

pmax2

(
1− pmax1

1− c

)k−1
]
,

B = (1− c) + c(n+ k)

(
1− c

pmax2

)
,

pmax1 = max{p1, ..., pk−1},

pmax2 = max{pk+1, ..., pk+n−1}.

If pk+n − pk ≥ 0, then

EXC ≤ T · pk+n − pk
1− pk

(1− c)k
(
A−B(1− pmax)

n−1
)
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where

A = k
1− pk
1− c

− (1 + kpmax)

(
1− pmax

1− c

)k c

p2max

,

B =
(1− pmax)

k+n−1

(1− c)k

(
k + n− c

p2max

(1 + pmax(k + n− 1))

)
,

pmax = max{p1, ..., pk+n−1}.

Similarly, we can model the domain novice solver as a system where each solution candidate

has at most some chance succeeding. That is,

∀k : pk ≤ d, for some d ∈ (0, 1).

In this case we are interested in lower bounds on the excess term EXC from Theorems 7.6 and

7.9.

Theorem 7.12. The expected number of excessive solution candidates tried in the novice system

before either �nding a solution or discovering that none of our solution candidates works, which

is expressed by the term EXC from the Theorem 7.6, can be lower bounded as follows

EXC ≥ θ · pk+n−1

1− pk
(1− d)k

d2
(
A−B(1− d)n−1

)
where θ = pk − pk+n, and

A = 1 + kd

[
1− 1− pk

1− d
d

pk+n−1

(
1− pk−1

1− d

)k−1
]
,

B = (1− d) + d(n+ k)

(
1− d

pk+n−1

)
.

Theorem 7.13. Let T be the constant mentioned above. The expected increase of time before

solving the problem in the novice system, which is expressed by the term EXC from the Theorem

7.9, can be lower bounded as follows.

If pk+n − pk ≤ 0, then

EXC ≥ T · pmin2 ·
pk − pk+n

1− pk
(1− d)k

d2
(
A−B(1− d)n−1

)
where

A = 1 + kd

[
1− 1− pk

1− d
d

pmin2

(
1− pmin1

1− d

)k−1
]
,

B = (1− d) + d(n+ k)

(
1− d

pmin2

)
,

pmin1 = min{p1, ..., pk−1},

pmin2 = min{pk+1, ..., pk+n−1}.
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If pk+n − pk ≥ 0, then

EXC ≥ T pk+n − pk
1− pk

(1− d)k
(
A−B(1− pmin)

n−1
)

where

A = k
1− pk
1− d

− (1 + kpmin) ·
(
1− pmin

1− d

)k d

p2min

,

B =
(1− pmin)

k+n−1

(1− d)k

(
k + n− d

p2min

(1 + pmin(k + n− 1))

)
,

pmin = min{p1, ..., pk+n−1}.

We can also consider the case where the probabilities pi are all approximately the same

(denote this value p), and the values ti are arbitrary. This case describes the situation where the

solver has many similarly successful candidates (e.g., lots of very general methods of uncertain

success), and he is required to choose. What e�ect on the expected problem solving time has

the exchanging two candidates in this case?

Theorem 7.14. Let p be the value mentioned above. The expected increase of time before solving

the problem in the indi�erent system, which is expressed by the term EXC from the Theorem

7.9, can be approximated as follows

EXC ≈ (tk+n − tk)(1− p)k−1
(
1 + (1− p)− (1− p)n+1

)
.

In real life problem solving a particular solution candidate (e.g., a method) could have

been used to solve multiple similar problems each time consuming a di�erent amount of time.

Therefore, when the solver is considering a potential solution candidate, it has one cumulative

probability of success (e.g., based on the experience and the strength of similarity/relatedness

with the current problem model), but it can have multiple application times because of this

possible application to the similar problems in the past. What order of examination of the

solution candidates in this setting leads to the minimal expected time to �nd a solution? What

if the solver remembers only an approximate average time?

Theorem 7.15. Let sk be a solution candidate which we in the past applied nk times, and let

tk,j be the execution time of the jth application. Denote the mean execution time of the solution

candidate sk with Etk:

Etk =
tk,1 + ...+ tk,nk

nk
.

If one continues to select subsequent candidates on the basis of maximum pk/Etk, then the

expected time before solving the problem will be minimal (provided the problem can be solved by

one of our candidates).
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Abstract

The ability to solve problems e�ectively is one of the hallmarks of human cognition. Yet, in

our opinion it gets far less research focus than it rightly deserves. In this paper we outline a

framework in which this e�ectivity can be studied; we identify the possible roots and scope of

this e�ectivity and the cognitive processes directly involved. More particularly, we have observed

that people can use cognitive mechanisms to drive problem solving by the same manner on which

an optimal problem solving strategy suggested by Solomono� (1986) is based. Furthermore, we

provide evidence for cognitive substrate hypothesis (Cassimatis, 2006) which states that human

level AI in all domains can be achieved by a relatively small set of cognitive mechanisms. The

results presented in this paper can serve both cognitive psychology in better understanding

of human problem solving processes, and arti�cial intelligence in designing more human like

intelligent agents.

Keywords: human problem solving, e�ectivity, mechanisms, arti�cial intelligence, cognitive

architecture

Abstrakt

Jedna z najdôleºitej²ích vlastností ©udského myslenia je ur£ite schopnos´ rie²i´ problémy efek-

tívne. V tejto práci popisujeme súvislosti, v ktorých sa dá táto efektivity skúma´. Identi�kujeme

potenciálne korene a rozsah tejto efektivity a tieº kognitivne procesy, ktoré sú za ¬u zodpovedné.

Presnej²ie, zistili sme, ºe ©udia vedia pouºíva´ isté kognitívne mechanizmy spôsobom ve©mi po-

dobným optimálnej pravdepodobnostnej strategií na rie²enie problémov, ktorú vo svojej práci

pouºil Solomono� (1986). Okrem toho, v práci ponúkame argumenty pre "Cognitive substrate

hypothesis"(Cassimatis, 2006), ktorá hovorí, ºe umelá inteligencia na úrovni £loveka moºe by´

dosiahnutá pomocou relatívne malého po£tu kognitívnych mechanizmov. Výsledky prezento-

vané v tejto práci moºu slúºi´ kognitívnej psychologii pri lep²om porozumení ©udského procesu

rie²enia problémov, ako aj umelej inteligencií pri navrhovaní vysoko inteligentných agentov.

K©ú£ové slová: ©udské rie²enie problémov, efektivita, mechanizmy, umelá inteligencia, kogni-

tívne architektúry



References

G. Altshuller. The Art of Inventing (And Suddenly the Inventor Appeared). Technical Innovation

Center, Worcester, MA, 1994.

G. Altshuller. The innovation algorithm: TRIZ, systematic innovation and technical creativity.

Technical Innovation Center, Worcester, MA, 2000.

J. Anderson. Rules of Mind. Hillsdale, NJ: Lawrence Erlbaum Associates Inc., 1993.

J. Anderson. ACT: A simple theory of complex cognition. American Psychologist 51.4, 1996.

J. Anderson, D. Bothell, M. Byrne, S. Douglass, C. Lebiere, and Y. Qin. An integrated Theory

of the Mind. Psychological review 111.4, 2004.

J. R. Anderson. A spreading activation theory of memory. Journal of verbal learning and verbal

behavior, 22(3):261�295, 1983.

J. Baldo, D. Dronkers, N.F.and Wilkins, C. Ludy, P. Raskin, and J. Kim. Is problem solving

dependent on language? Brain and Language 92, 2005.

M. Bassok. Analogical Transfer in Problem Solving, In R.Sternberg and J.E.Davidson (Eds.),

The Psychology of Problem Solving. Cambridge University Press, 2003.

I. Bejar, R. Cha�n, and S. Embretso. Cognitive and psychometric analysis of analogical problem

solving. New York: Springer-Verlag, 1991.

J. Carbonell. Derivational analogy and its role in problem solving. Paper presented at the Third

National Conference on Arti�cial Intelligence, Washington, DC, 1983.

N. Cassimatis. A cognitive substrate for achieving human-level intelligence. AI magazine, Vol.

27, No. 2, 2006.

N. Cassimatis, P. Bignoli, M. Bugajska, S. Dugas, U. Kurup, A. Murugesan, and P. Bell. An

architecture for adaptive algorithmic hybrids. Systems, Man, and Cybernetics, Part B: Cy-

bernetics, IEEE Transactions on, 40(3), 2007.

W. G. Chase and H. A. Simon. Perception in chess. Cognitive psychology, 4(1), 1973.

A. Collins and E. Loftus. A spreading activation theory of semantic processing. Psychological

Review 82, 1975.

A. M. Collins and M. R. Quillian. Retrieval time from semantic memory. Journal of verbal

learning and verbal behavior, 8(2):240�247, 1969.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual

ACM symposium on Theory of computing, pages 151�158. ACM, 1971.

W. Croft and D. A. Cruse. Cognitive linguistics. Cambridge University Press, 2004.

14



A. d. C. DaSilveira and W. B. Gomes. Experiential Perspective of Inner Speech in a Problem-

solving Context. Paidéia (Ribeir?o Preto) [online], vol. 22, n. 51, 2012.

J. Davidson. The suddenness of insight. In R.J.Sternberg and J.E.Davidson(Eds.), The nature

of insight. New York: Cambridge University Press, 1995.

J. Davidson. Insights about insightful problem solving. In R.J.Sternberg and J.E.Davidson

(EDs.), Psychology of problem solving. Cambridge University Press, 2003.

J. Davidson and R. Sternberg. The role of insight in intellectual giftedness. Gifted child quarterly

28, 1986.

I. J. Deary, L. J. Whalley, H. Lemmon, J. Crawford, and J. M. Starr. The stability of individual

di�erences in mental ability from childhood to old age: follow-up of the 1932 Scottish Mental

Survey. Intelligence, 28(1), 2000.

J. Dorfman, V. Shames, and J. Kihlstrom. Intuition, incubation, and insight: Implicit cognition in

problem solving. In Geo�rey Underwood (Ed.), Implicit Cognition. Oxford: Oxford University

Press, 1996.

W. Duch, R. Oentaryo, and M. Pasquire. Cognitive architectures: Where do we go from here.

AGI. Vol. 171, 2008.

K. Duncker. On problem solving. Psychological monographs 58, 1945.

A. Ericsson. The acquisition of expert performance as problem solving. In R. Sternberg and

J. Davidson, editors, The psychology of problem solving, pages 31�83. Cambridge University

Press. Cambridge, England, 2003.

E. Fink. Automatic Evaluation and Selection of Problem-Solving Methods: Theory and Expe-

riments. Journal of Experimental and Theoretical Arti�cial Intelligence 16.2, 2004.

K. Forbus. How minds will be built. Advances in Cognitive Systems 1, 2012.

D. Gentner and A. Stevens. Mental models. Lawrence Erlbaum Associates, Mahwah, NJ, 1983.

D. Gentner, M. Rattermann, and K. Forbus. The roles of similarity in transfer: Separating

retrievability from inferential soundness. Cognitive Psychology 25, 1993.

M. Gick and K. Holyoak. Analogical problem solving. Cognitive Psychology 12, 1980.

B. Hayes-Roth and F. Hayes-Roth. A cognitive model of planning*. Cognitive science, 3(4),

1979.

B. Hayes-Roth, S. Cammarata, S. E. Goldin, F. Hayes-Roth, S. Rosenschein, and P. W. Thorn-

dyke. Human planning processes. Technical report, DTIC Document, 1980.

D. Hebb. The organization of behaviour: A neuropsychological theory. New York: Wiley, 1949.

15



D. Hofstadter. Fluid concepts and creative analogies: Computer models of the fundamental

mechanisms of thought. London: Allen Lane, The Penguin Press, 1997.

E. Hudlicka. Beyond Cognition: Modelling Emotion in Cognitive Architectures. ICCM, 2004.

J. Hummel and K. Holyoak. Distributed representation of structure: A theory of analogical

access and mapping. Psychological review, 104, 1997.

M. Hutter. A theory of universal arti�cial intelligence based on algorithmic complexity. arXiv

preprint cs/0004001, 2000.

M. Hutter. The fastest and shortest algorithm for all well-de�ned problems. International

Journal of Foundations of Computer Science, 13(03), 2002.

M. Hutter. Optimality of universal Bayesian sequence prediction for general loss and alphabet.

The Journal of Machine Learning Research, 4, 2003.

M. Hutter. Universal arti�cial intelligence: Sequential decisions based on algorithmic probability.

Springer Science & Business Media, 2005.

M. Hutter. One decade of universal arti�cial intelligence. In Theoretical foundations of arti�cial

general intelligence, pages 67�88. Springer, 2012.

C. Kaplan and H. Simon. In search of insight. Cognitive Psychology 22, 1990.

S. Kaplan. An introduction to TRIZ: The Russian theory of inventive problem solving. South�eld,

MI: Ideation International Inc., 1996.

M. Keane. Modelling problem solving in Gestalt insight problem. Milton Keynes, UK: The Open

University, 1989.

M. Klamkin and D. Newman. Extensions of the Weierstrass Product Inequalities. Mathematics

Magazine, Vol. 43, No. 3, 1970.

A. Koestler. The act of creation. New York: Macmillan, 1964.

J. Kolodner. An introduction to case-based reasoning. Arti�cial Intelligence Review 6, Springer,

1992.

L. Kotovsky and D. Gentner. Comparison and categorization in the development of relational

similarity. Child Development, 67, 1996.

U. Kurup, P. Bignoli, J. Scally, and N. Cassimatis. An architectural framework for complex

cognition. Cognitive Systems Research 12.3, 2011.

P. C. Kyllonen. Is working memory capacity spearman's g. In I. Dennis and P. Taps�eld,

editors, Human abilities: Their nature and measurement, pages 49 � 75. Mahwah NJ: Lawrence

Erlbaum Associates, Inc., 1996.

16



J. Laird. Extending the Soar cognitive architecture. Frontiers in Arti�cial Intelligence and

Applications 171, 2008.

P. Langley. An adaptive architecture for physical agent. The 2005 IEEE/WIC/ACM Internati-

onal Conference on. IEEE, 2005.

P. Langley. Intelligent behavior in humans and machine. American Association for Arti�cial

Intelligence, 2006.

P. Langley and D. Choi. A uni�ed cognitive architecture for physical agent. Proceedings of the

National Conference on Arti�cial Intelligence. Vol. 21. No. 2, 2006.

P. Langley and S. Rogers. An Extended Theory of Human Problem Solving. Proceedings of the

twenty-seventh annual meeting of the cognitive science society, 2005.

P. Langley and N. Trivedi. Elaborations on a Theory of Human Problem Solving. Poster

Collection: The Second Annual Conference on Advances in Cognitive Systems, 2013.

P. Langley, J. Laird, and S. Rogers. Cognitive architectures: Research issues and challenge.

Cognitive Systems Research 10.2, 2009.

L. Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3), 1973.

M. Li and P. M. Vitányi. An introduction to Kolmogorov complexity and its applications. Springer

Science & Business Media, 2009.

N. Maier. Reasoning in humans II: The solution of a problem and its appearance in consciousness.

Journal of Comparative Psychology: Learning, Memory, and Cognition 12, 1931.

D. Medin and B. Ross. The speci�c character of abstract thought: Categorization, problem

solving, and induction (Vol. 5). Hillsdale, NJ: Erlbaum, 1989.

S. Nason and J. Laird. Soar-RL: Integrating reinforcement learning with Soar. Cognitive Systems

Research 6.1, 2005.

A. Newell. The heuristic of George Polya and its relation to arti�cial intelligence. Carnegie

Mellon University, Computer Science Department. Paper 2413, 1981.

A. Newell and H. Simon. GPS, A program that simulates human thought. In E. A. Feigenbaum

and J. Feldman, Computers and thought. New York, McGraw-Hill, 1963.

A. Newell and H. Simon. Human problem solving. Englewood Cli�s, NJ: Prentice-Hall, 1972.

A. Newell and H. Simon. Computer science as empirical inquiry: Symbols and search. Commu-

nications of the ACM 19.3, 1976.

A. Newell, J. Shaw, and H. Simon. Elements of theory of human problem solving. Psychological

Review 65, 1958.

17



S. Ohlsson. Information processing explanations of insight and related phenomena. In M.T.Keane

and K.J.Gilhooly (Eds.), Advances in psychology of thinking. Cambridge, MA: Harvard Uni-

versity Press, 1992.

L. Peterson and M. Peterson. Short-term retention of individual verbal items. Journal of

Experimental Psychology 58, 1959.

G. Polya. How to solve it. Doubleday, Garden City, NY, second edition, 1957.

J.-C. Pomerol. Arti�cial intelligence and human decision making. European Journal of Opera-

tional Research, 99(1), 1997.

M. Quillian. Semantic memory. In M.Minsky (Ed.), Semantic information processing. Cam-

bridge, MA:MIT Press, 1968.

S. Robertson. Problem Solving: Problem similarity. Psychology Press, 2003.

J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3), 2004.

J. Schmidhuber. Gödel machines: Self-referential universal problem solvers making provably

optimal self-improvements. In In Arti�cial General Intelligence. Citeseer, 2005.

C. Seifert, D. Meyer, N. Davidson, A. Patalano, and I. Yaniv. Demysti�cation of cognitive

insight: Opportunistic assimilation and the prepared-mind hypothesis. MIT Press, 1994.

H. Simon. Models of though (vol.2). Yale University Press, New Haven, CT, 1989.

S. Slade. Case-based reasoning: A research paradigm. AI magazine 12(1), 1991.

R. Solomono�. A preliminary report on a general theory of inductive inference (revision of

Report V-131). Contract AF, 49(639):376, 1960.

R. Solomono�. A formal theory of inductive inference. Part I. Information and control, 7(1),

1964a.

R. Solomono�. A formal theory of inductive inference. Part II. Information and control, 7(2),

1964b.

R. Solomono�. Complexity-based induction systems: comparisons and convergence theorems.

Information Theory, IEEE Transactions on, 24(4), 1978.

R. Solomono�. Optimum sequential search. Memorandum, Oxbridge Research, Cambridge, Mass,

1984.

R. Solomono�. The Application Of Algorithmic Probability to Problems in Arti�cial Intelligence.

In L.N.Kanal and J.F.Lemmer (Eds.), Uncertainty in Arti�cial Intelligence. Elsevier Science

Publishers B.V. (North-Holland), 1986.

R. Solomono�. Does algorithmic probability solve the problem of induction?, 2001.

18



R. Solomono�. Algorithmic probability: Theory and applications. In Information Theory and

Statistical Learning. Springer, 2009.

R. Solomono�. Algorithmic probability, heuristic programming and AGI. In Proc. 3rd Conf. on

Arti�cial General Intelligence. Advances in Intelligent Systems Research, volume 10, 2010.

R. Solomono�. Algorithmic probability�Its discovery�Its properties and application to strong

AI. Randomness Through Computation: Some Answers, More Questions, 2011.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354�356, 1969.

J. Veness, K. S. Ng, M. Hutter, and D. Silver. Reinforcement learning via AIXI approximation.

arXiv preprint arXiv:1007.2049, 2010.

J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A monte-carlo aixi approximation.

Journal of Arti�cial Intelligence Research, 40(1), 2011.

I. Wayne and P. Langley. Exploring moral reasoning in a cognitive architecture. Proceedings of

the Thirty-Third Annual Meeting of the Cognitive Science Society, Boston, 2011.

R. Weisberg. Metacognition and insight during problem solving: Comment on Metcalfe. Journal

of experimental psychology: Learning, memory, and cognition, 18, 1992.

R. E. Wing. Spatial components of mathematical problem solving (doctoral dissertation). 2005.

D. Woods. An Evidence-Based Strategy for Problem Solving. Journal of Engineering Education

89, 2000.

S. Wu. Some results on extending and sharpening the Weierstrass product inequalities. Journal

of Mathematical Analysis and Applications, Vol. 308, No. 2, 2005.

19



Published work related to the thesis issues

F. Duris. Error bounds on the probabilistically optimal problem solving strategy. Submitted to

RAIRO - Theoretical Informatics and Applications, 2015.

20


